Repository logo
Communities & Collections
All of KYUSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Musalima, Juliet H."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impact of food-to-food fortification by house cricket powder on the sensory, functional, and nutritional properties of climate-smart cassava flour
    (Springer Link, 2024-11-28) Ssepuuya, Geoffrey; Jjoloba, Wilberforce; Nakamya, Leticia; Musalima, Juliet H.; Nakimbugwe, Dorothy; Ssendagala, George William
    Cassava ranks as the 2nd most important staple food in Uganda. Several climate-smart cassava varieties have been developed but remain nutrient deficient. This study evaluated the impact of adding house cricket powder on cassava’s sensory, functional, and nutritional quality behaviour. Using design expert software (version 13) and sensory analysis techniques, the study screened and selected four cassava–cricket composites based on two cassava varieties (Narocass 1 and Magana) containing between 8.36% and 10.52% house cricket powder. These composites exhibited significantly lower scores (P < 0.05) for colour, aroma, aftertaste, and overall acceptability, although they remained within sensory acceptable limits, i.e., 5–7 on a 9-point hedonic scale. Cricket powder incorporation significantly increased the protein content from 1.05-1.11% to 6.46–6.81% (P < 0.001), fat content from 0.71-0.74% to 2.30–2.77% (P < 0.001), and protein digestibility from 83-84% to 88–94% (P < 0.001). The functional properties were statistically significantly (P < 0.05) influenced, however, there were not any significant changes in the sensory properties (taste, texture, flavour, mouth-feel, etc.) such as taste and mouthfeel that the significant changes in functional properties would influence. The pasting properties were not generally affected. Hence, nutritionally richer cassava–cricket powder composites can substitute the food functions of plain cassava flour. The sensory quality of house cricket powder should be improved through refining techniques known to positively influence the sensory properties of cereal and tuber flours to which it is normally added as an ingredient.

Kyambogo University copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback