Browsing by Author "Mukalazi, Herbert"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Couple-stress nanofluid flow comprised of titanium alloy subject to Hall current and Joule heating effects: Numerical investigation(AIP Advances, 2024-11-01) Jubair, Sidra; Ali, Bilal; Rafique, Khadija; Ansari, Mushtaq Ahmad; Mahmood, Zafar; Kumar, Abhinav; Mukalazi, Herbert; Alqahtani, HaifaNanofluid flowoverarotating disk has several applications in engineering and industrial sectors, such as in cooling systems, heat exchangers, aerospace systems, and renewable energy systems. In the current analysis, the couple stress nanofluid flow over a rotating disk is reported. The nanofluid consists of ethylene glycol and titanium aluminum vanadium (Ti6Al4V) nanoparticles (NPs). The unique properties of Ti6Al4V-NPs, such as biocompatibility, high strength, high boiling point (1604–1660○C), and high corrosion resistance, make them more suitable for automobile industries. For the heat and mass transfer, the Cattaneo–Christov concept is introduced. In addition, the fluid flow is subjected to magnetic field, Hall current, thermal radiation, and Joule heating. The modeled equations are restructured into the dimensionless system of ordinary differential equations (ODEs) by using the similarity approach. The system of ODEs is further numerically solved through a MATLABpackagebased on the finite difference method (BVP4c). The results are presented in figures. It has been observed that the energy and curves of the nanofluid decline with the influence of thermal and solutal time relaxation parameters, respectively.Item Quality evaluation and predictive analysis of drilled holes in jute/ palm/polyester hybrid bio-composites using CMM and ANN techniques(Journal of Natural Fibers, 2025-04-26) Amroune, Salah; Elhadi, Abdelmalek; Slamani, Mohamed; Arslane, Mustapha; Belaadi, Ahmed; Abdullah, Mahmood M. S.; Al-Lohedan, Hamad A.; Bidi, Tarek; Mukalazi, Herbert; Al-Khawlani, AmarIn this study, the evaluation of 75 holes drilled in a hybrid bio-composite jute/palm/polyester plate and controlled by a coordinate measuring machine (CMM) is essential to ensure the quality, dimensional precision, and geometric conformity of the plate. This rigorous process is necessary to meet industrial standards for circularity and cylindricity, which are essential criteria for high-performance applications. Additionally, the integration of artificial neural network (ANN) techniques has revolutionized this approach by enabling precise predictions of key parameters such as delamination, circularity, and cylindricity. In this study, the ANN was trained with 52 samples (70%), while 8 samples (10%) were used for validation and 15 others (20%) for testing at different stages. The results show the influence of feed rate on the delamination factor (Fd) (R2 = 0.98), circularity error (R2 = 0.99), and cylindricity error (R2 = 0.98). This predictive approach significantly improves the reliability and efficiency of the evaluation process.Item Stability analysis of a nonlinear malaria transmission epidemic model using an effective numerical scheme(Scientific Reports, 2024-07-29) Jian, Jun He; Abeer, Aljohani; Shahbaz, Mustafa; Ali, Shokri; Khalsaraei, Mohammad Mehdizadeh; Mukalazi, HerbertMalaria is a fever condition that results from Plasmodium parasites, which are transferred to humans by the attacks of infected female Anopheles mosquitos. The deterministic compartmental model was examined using stability theory of differential equations. The reproduction number was obtained to be asymptotically stable conditions for the disease-free, and the endemic equilibria were determined. More so, the qualitatively evaluated model incorporates time-dependent variable controls which was aimed at reducing the proliferation of malaria disease. The reproduction number R (o) was determined to be an asymptotically stable condition for disease free and endemic equilibria. In this paper, we used various schemes such as Runge–Kutta order 4 (RK-4) and non-standard finite difference (NSFD). All of the schemes produce different results, but the most appropriate scheme is NSFD. This is true for all step sizes. Various criteria are used in the NSFD scheme to assess the local and global stability of disease-free and endemic equilibrium points. The Routh–Hurwitz condition is used to validate the local stability and Lyapunov stability theorem is used to prove the global asymptotic stability. Global asymptotic stability is proven for the disease-free equilibrium when R0 ≤ 1. The endemic equilibrium is investigated for stability when R0 ≥ 1. All of the aforementioned schemes and their effects are also numerically demonstrated. The comparative analysis demonstrates that NSFD is superior in every way for the analysis of deterministic epidemic models. The theoretical effects and numerical simulations provided in this text may be used to predict the spread of infectious diseases.